Poisson relations between minors and their consequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L507
(http://iopscience.iop.org/0305-4470/27/13/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Poisson relations between minors and their consequences

B A Kupershmidt
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 23 February 1994

Abstract

A multiplicative Poisson bracket on $G L(N)$ can be restricted onto $S L(N)$ iff the determinant det is central on $G L(N)$. To decide whether the det is central, a simple criterion is derived in the r-matrix language with the help of a general formula for Poisson brackets between determinants of arbitrary minors.

Quantum group structures on $S L(N)$ always appear through the following device: one starts with a quantum group structure on $G L(N)$, constructs the corresponding quantum determinant, shows that it is central, and then equates this determinant to l. It is quite likely that all quantum group structures on $S L(N)$ can be obtained in this way, but this is very difficult to prove. In the quasiclassical limit, the corresponding conjecture is that every multiplicative Poisson bracket on $S L(N)$ comes from a multiplicative Poisson bracket on $G L(N)$ with a central determinant. This is undoubtedly true and is, probably, technically feasible to prove by the currently available machinery. (For $N=2$, both the quantum and the quasiclassical claims are proven in (Kupershmidt 1994).) In practice, since the group $G L(N)$ is much more convenient to work with than the group $S L(N)$, one starts with a multiplicative Poisson bracket on $G L(N)$ and then, if the determinant happens to be central, passes on to $S L(N)$ by setting det $=1$.

But what is an efficient way to decide whether the det is central? Let $M=\left(M_{i}^{\alpha}\right)$ be the typical matrix of coordinate functions on $G L(N)$. Let

$$
\begin{equation*}
\left\{M_{i}^{\alpha}, M_{j}^{\beta}\right\}=r_{i j}^{\varphi \psi} M_{\varphi}^{\alpha} M_{\psi}^{\beta}-r_{\varphi \psi}^{\alpha \beta} M_{i}^{\varphi} M_{j}^{\psi} \tag{1}
\end{equation*}
$$

be the general multiplicative (pre) Poisson bracket on $G L(N)$ (and $\operatorname{Mat}(N)$); summation is always implied over non-fixed repeated indices. We do not assume in what follows (unless specified otherwise) that the Jacobi identities for the Poisson bracket (1) are satisfied; thus, the only property required of the structure constants $r_{i j}^{\varphi \psi}$ is the skew-symmetry:

$$
\begin{equation*}
r_{i j}^{\varphi \psi}=-r_{j i}^{\psi \varphi} . \tag{2}
\end{equation*}
$$

Let $U=\operatorname{tr}_{\mathrm{L}}(r)=-\operatorname{tr}_{\mathrm{R}}(r)$ be the following matrix in $\operatorname{Mat}(N)$:

$$
\begin{equation*}
U_{i}^{j}=r_{\varphi i}^{\varphi j}=-r_{i \varphi}^{j \varphi} \tag{3}
\end{equation*}
$$

The determinantal criterion alluded to above is:

$$
\begin{equation*}
\{\text { det is central }\} \Leftrightarrow\{U=0\} \tag{4}
\end{equation*}
$$

This follows from the formula

$$
\begin{equation*}
\{\operatorname{det}(M), M\}=[U, M] \operatorname{det}(M) \tag{5}
\end{equation*}
$$

meaning, locally, that

$$
\begin{equation*}
\left\{\operatorname{det}(M), M_{a}^{b}\right\}=[U, M]_{a}^{b} \operatorname{det}(M) \tag{6}
\end{equation*}
$$

Indeed, from formula (5) we see that det is central iff U is a scalar matrix. But formulae (2), (3) imply that

$$
\begin{equation*}
\mathrm{tr} U=0 \tag{7}
\end{equation*}
$$

and the criterion (4) follows.
Formula (6) results from the following general determinantal identity. For a pair of multi-indices $I=\left(i_{1}, i_{2}, \ldots, i_{p}\right), J=\left(j_{1}, j_{2}, \ldots, j_{p}\right)$ with $1 \leqslant i_{1}, i_{2}, \ldots, j_{1}, j_{2}, \ldots \leqslant N$, set

$$
\begin{equation*}
D_{I}^{J}=\operatorname{det}(\mathcal{M}) \quad \mathcal{M}_{\varphi}^{\psi}=M_{i_{\varphi}}^{j_{\psi}} . \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\{D_{I}^{J}, D_{A}^{B}\right\}=r_{i_{k} a_{l}}^{\varphi \psi} D_{I+\left(\varphi \div i_{k}\right)}^{J} D_{A+\left(\psi \div a_{l}\right)}^{B}-r_{\varphi \psi}^{j_{k} b_{l}} D_{I}^{J+\left(\varphi \div j_{k}\right)} D_{A}^{B+\left(\psi \div b_{l}\right)} ; \tag{9}
\end{equation*}
$$

here $I+\left(\varphi \div i_{k}\right)$ is the multi-index I whose k th entry i_{k} is replaced by φ, and similar for the other multi-indices. In particular, when the multi-indices A and B are simple indices: $A=(a)$ and $B=(b)$, formula (9) becomes:

$$
\begin{equation*}
\left\{D_{I}^{J}, M_{a}^{b}\right\}=r_{i_{k} a}^{\varphi \psi} D_{I+\left(\varphi \div i_{k}\right)}^{J} M_{\psi}^{b}-r_{\varphi \psi}^{j{ }_{j} b} D_{I}^{J+\left(\varphi \div j_{k}\right)} M_{a}^{\psi} \tag{10}
\end{equation*}
$$

When $I=J=(1,2, \ldots, N)$, formula (10) yields

$$
\left\{\operatorname{det}(M), M_{a}^{b}\right\}=\operatorname{det}(M)\left(r_{k a}^{k \psi} M_{\psi}^{b}-r_{k \psi}^{k b} M_{a}^{\psi}\right)=\operatorname{det}(M)[U, M]_{a}^{b}
$$

which is formula (6).
Proof of formula (9). Let us first prove formula (10). We use induction on the length $|I|$ of the multi-index I. For $|I|=1$ formula (10) is just the defining formula (11). To proceed with the induction step, we use Laplace's formula

$$
\begin{equation*}
D_{i I}^{\mathcal{J}}=(-1)^{c+1} M_{i}^{t_{c}} D_{I}^{\mathcal{J}-t_{c}} \tag{11}
\end{equation*}
$$

where $i I$ is the multi-index $\left(i, i_{1}, \ldots,\right)$ and $\mathcal{J}-t_{c}$ is the multi-index \mathcal{J} whose c th entry t_{c} is removed. Now, for $\mathcal{I}=i I$ we have

$$
\begin{align*}
\left\{D_{I}^{\mathcal{J}}, M_{a}^{b}\right\}= & \left\{D_{i I}^{\mathcal{J}}, M_{a}^{b}\right\}=\left\{(-1)^{c+1} M_{i}^{t_{c}} D_{I}^{\mathcal{J}-t_{c}}, M_{a}^{b}\right\}[\mathrm{by}(10)] \\
= & (-1)^{c+1} D_{I}^{\mathcal{J}-t_{c}}\left(r_{i a}^{\varphi \psi} M_{\varphi}^{t_{\varphi}} M_{\psi}^{b}-r_{\varphi \psi}^{t_{c} b} M_{i}^{\varphi} M_{a}^{\psi}\right) \tag{12.1}\\
& +(-1)^{c+1} M_{i}^{t_{c}}\left(r_{i k a}^{\varphi \psi} D_{I+\left(\varphi-i_{k}\right)}^{\mathcal{J}-t_{c}} M_{\psi}^{b}-\sum_{s \neq c} r_{\varphi \psi}^{t_{i} b} D_{I}^{\mathcal{J}-t_{c}+\left(\varphi \div t_{s}\right)} M_{a}^{\Psi}\right) \tag{12.2}
\end{align*}
$$

On the other hand, formula (10) predicts that

$$
\begin{align*}
\left\{D_{I}^{\mathcal{J}}, M_{a}^{b}\right\}= & \left(r_{i a}^{\varphi \psi} D_{\varphi I}^{\mathcal{J}}+r_{i_{k} a}^{\varphi \psi} D_{i I+\left(\varphi \rightarrow i_{k}\right)}^{\mathcal{J}} M_{\psi}^{b}-r_{\varphi \psi}^{t_{c} b} D_{i I}^{\mathcal{J}+\left\langle\varphi \div t_{c}\right\rangle} M_{a}^{\psi}\right. \\
= & r_{i a}^{\varphi \psi}(-1)^{c+1} M_{\varphi}^{t_{c}} D_{I}^{\mathcal{J}-t_{c}} M_{\psi}^{b}+r_{i_{k a}}^{\varphi \psi}(-1)^{c+1} M_{i}^{t_{c}} D_{I+\left(\varphi-i_{k}\right)}^{\mathcal{J}-t_{c}} M_{\psi}^{b} \tag{13.1}\\
& -r_{\varphi \psi}^{t_{s} b}\left[\sum_{c \neq s}(-1)^{c+1} M_{i}^{t_{c}} D_{I}^{\mathcal{J}-t_{c}+\left(\varphi \div t_{s}\right)}+(-1)^{s+1} M_{i}^{\varphi} D_{I}^{\mathcal{J}-t_{s}}\right] M_{a}^{\psi} \tag{13.2}
\end{align*}
$$

The $1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}$, and 4 th terms in the expression (12) match, in the expression (13), the 1st, 4th, 2nd, and 3rd term, respectively. This proves formula (10).

To prove formula (9), we use induction on $|A|=|B|$. The base of the induction is the case $|A|=|B|=1$, and this is the just proved formula (10). To make an induction step, let $\mathcal{A}=a A$. Then

$$
\begin{align*}
\left\{D_{I}^{J}, D_{\mathcal{A}}^{\mathcal{B}}\right\}= & \left\{D_{I}^{J}, D_{a A}^{\mathcal{B}}\right\}=\left\{D_{I}^{J},(-1)^{c+1} M_{a}^{\beta_{c}} D_{A}^{\mathcal{B}-\beta_{c}}\right\}[b y(9),(10)] \\
= & (-1)^{c+1} M_{a}^{\beta_{c}}\left[r_{i_{k} a_{t} \psi}^{\varphi \psi} D_{I+\left(\varphi \div i_{k}\right)}^{J} D_{A+\left(\psi \div a_{l}\right)}^{\mathcal{B}-\beta_{c}}-\sum_{s \neq c} r_{\varphi \psi}^{j_{k} \beta_{s}} D_{I}^{J+\left(\varphi \div j_{k}\right)} D_{A}^{\mathcal{B}-\beta_{c}+\left(\psi \div \beta_{s}\right)} I\right. \tag{14.1}\\
& +(-1)^{c+1} D_{A}^{\mathcal{B}-\beta_{c}}\left[r_{i_{k} a}^{\varphi \psi} D_{I+\left(\varphi \div i_{k}\right)}^{J} M_{\psi}^{\beta_{c}}-r_{\varphi \psi \psi}^{i_{k} \beta_{c}} D_{I}^{J+\left(\varphi \div j_{k}\right)} M_{a}^{\psi}\right] \tag{14.2}
\end{align*}
$$

On the other hand, formula (9) predicts that

$$
\begin{align*}
\left\{D_{I}^{J}, D_{A}^{\mathcal{B}}\right\}=\{ & \left.D_{I}^{J}, D_{a A}^{\mathcal{B}}\right\}=r_{i_{k}}^{\varphi \psi} D_{I \div\left(\varphi \div i_{k}\right)}^{J} D_{\varphi A}^{\mathcal{B}} \\
& +r_{i_{k} a_{l}}^{\varphi \psi} D_{I+\left(\varphi \div a_{k}\right)}^{J} D_{a A+\left(\psi \div a_{l}\right)}^{\mathcal{B}}-r_{\varphi \psi}^{j_{k} \beta_{s}} D_{I}^{J+\left(\varphi \div j_{k}\right)} D_{a A}^{B+\left(\psi \div \beta_{s}\right)} \\
= & D_{I+\left(\varphi \div a_{k}\right)}^{J}\left[r_{i_{k} a}^{\varphi \psi}(-1)^{c+1} M_{\varphi}^{\beta_{c}} D_{A}^{B-\beta_{c}}+r_{i_{k} a_{l}}^{\varphi \psi}(-1)^{c+1} M_{\varphi}^{\beta_{c}} D_{A+\left(\psi \div a_{l}\right)}^{B-\beta_{c}}\right] \tag{15.1}\\
& -r_{\varphi \psi}^{j k \beta_{s}} D_{I}^{J+\left(\varphi \div j_{k}\right)}\left[\sum_{c \neq s}(-1)^{c+1} M_{a}^{\beta_{c}} D_{A}^{\mathcal{B}-\beta_{c}+\left(\psi \div \beta_{s}\right)}+(-1)^{s+1} M_{a}^{\psi} D_{A}^{\mathcal{B}-\beta_{s}}\right] \tag{15.2}
\end{align*}
$$

The matching scheme is: the 1 st, 2 nd , 3 rd, and 4 th term in the expression (14) versus the 2nd, 3rd, 1st and 4th term, respectively, in the expression (15).

We now consider some applications of the determinantal criterion (4).
Let V be an N-dimensional vector space with a quadratic Poisson bracket

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=c_{i j}^{k l} x_{k} x_{i} \quad c_{i j}^{k l}=-c_{j i}^{k l}=c_{i j}^{l k} \tag{16.1}
\end{equation*}
$$

and suppose $\Lambda^{1}(V)$ also has a quadratic Poisson bracket

$$
\begin{equation*}
\left\{\xi_{i}, \xi_{j}\right\}=d_{i j}^{k l} \xi_{k} \xi_{l} \quad d_{i j}^{k l}=d_{j i}^{k l}=-d_{i j}^{l k} \tag{16.2}
\end{equation*}
$$

$c_{i j}^{k l}$ and $d_{i j}^{k l}$ are constants, the variables $x_{i} s$ are even, and the variables $\xi_{i} s$ are odd. Then the actions End $(V) \times V \rightarrow V$, End $(V) \times \Lambda^{1}(V) \rightarrow \Lambda^{1}(V)$ are Poisson iff formula (1) holds with

$$
\begin{equation*}
r_{i j}^{k l}=c_{i j}^{k l}+d_{i j}^{k l} \tag{16.3}
\end{equation*}
$$

Conversely, given the multiplicative Poisson bracket (1) on End(V), it generates Poisson actions on V and $\Lambda^{1}(V)$ with

$$
\begin{equation*}
c_{i j}^{k l}=\left(r_{i j}^{k l}+r_{i j}^{l k}\right) / 2 \quad d_{i j}^{k l}=\left(r_{i j}^{k l}+r_{j i}^{k l}\right) / 2 \tag{16.4}
\end{equation*}
$$

In this language, the determinantal criterion (4) becomes

$$
\begin{equation*}
c_{\varphi i}^{\varphi j}+d_{\varphi i}^{\varphi j}=0 \quad \forall i, j \tag{17}
\end{equation*}
$$

Let us apply this formula to the Poisson version of the (factorizable) multiparameter deformation of the quantum $G L(N)$ (Sudbery 1990). This is the case

$$
\begin{align*}
& \left\{x_{i}, x_{j}\right\}=\Phi_{i j} x_{i} x_{j} \quad \Phi_{i j}=-\Phi_{j i} \tag{18.1}\\
& \left\{\xi_{i}, \xi_{j}\right\}=\Psi_{i j} \xi_{i} \xi_{j} \quad \Psi_{i j}=-\Psi_{j i} \tag{18.2}\\
& c_{i j}^{k l}=\Phi_{i j}\left(\delta_{i j}^{k l}+\delta_{i j}^{l k}\right) / 2 \quad d_{i j}^{k l}=\Psi_{i j}\left(\delta_{i j}^{k l}-\delta_{i j}^{l k}\right) / 2 \tag{18.3}\\
& 2 r_{i j}^{k l}=\delta_{i j}^{k l}\left(\Phi_{i j}+\Psi_{i j}\right)+\delta_{i j}^{l k}\left(\Phi_{i j}-\Psi_{i j}\right) \tag{18.4}
\end{align*}
$$

of formulae (16); here Φ and Ψ are arbitrary skew-symmetric constant matrices. The determinantal criterion (4) in the form (17) then turns into

$$
\begin{equation*}
\sum_{i}\left(\Phi_{i j}+\Psi_{i j}\right)=0 \quad \forall j \tag{19}
\end{equation*}
$$

The Jacobi identities for the End (V) with the r-matrix (18.4) are satisfied iff there exists a permutation σ of the indices $(1,2, \ldots, N)$ such that

$$
\begin{equation*}
\Phi_{i j}-\Psi_{i j}=\operatorname{const}[\operatorname{sgn}(\sigma(i)-\sigma(j))] . \tag{20}
\end{equation*}
$$

Let us call the space End (V) determinantal if the determinant is central. Set $V^{(1)}=$ End (V).

Theorem 1. $\quad V^{(2)}=\operatorname{End}\left(V^{(1)}\right)$ is determinantal iff $V^{(1)}$ is.
Proof. The multiplicative Poisson bracket (1) on $V^{(1)}=\operatorname{End}(V)$ induces the following Poisson bracket on $\Lambda^{1}\left(V^{(1)}\right)=\Lambda^{1}(\operatorname{End}(V))$:

$$
\begin{equation*}
\left\{\Omega_{i}^{\alpha}, \Omega_{j}^{\beta}\right\}=r_{i j}^{\varphi \psi} \Omega_{\varphi}^{\alpha} \Omega_{\psi}^{\beta}-r_{\varphi \psi}^{\alpha \beta} \Omega_{i}^{\varphi} \Omega_{j}^{\psi} \tag{21}
\end{equation*}
$$

where the $\Omega \mathrm{s}$ are odd. Formula (21) is equivalent to the property of the pair of actions $\Lambda^{1}(\operatorname{End}(V)) \times V \rightarrow \Lambda^{1}(V)$ and $\Lambda^{1}(\operatorname{End}(V)) \times \Lambda^{1}(V) \rightarrow V$ being Poisson. Together, formulae (1) and (21) make into Poisson maps the natural composition
$\Lambda^{u}(\operatorname{End}(V)) \times \Lambda^{v}(\operatorname{End}(V)) \rightarrow \Lambda^{u+v}(\operatorname{End}(V)) \quad u, v \in\{0,1\}=\mathbf{Z}_{2}$.
Formulae (1) and (2) can be put into the form (16), with

$$
\begin{align*}
& C_{i j}^{\gamma \varepsilon}=\left(\delta_{\alpha \beta}^{\gamma \varepsilon} r_{i j}^{k l}+\delta_{\beta \alpha}^{\gamma \varepsilon} r_{i j}^{l k}-\delta_{k l}^{i j} r_{\gamma \varepsilon}^{\alpha \beta}-\delta_{k l}^{j l} r_{\varepsilon \gamma}^{\alpha \beta}\right) / 2 \tag{23.1}\\
& D_{i j}^{\gamma \varepsilon}=\left(\delta_{\alpha \beta}^{\gamma \varepsilon} r_{i j}^{k l}-\delta_{\beta \alpha}^{\gamma \varepsilon} r_{i j}^{l k}-\delta_{k l}^{i j} r_{\gamma \varepsilon}^{\alpha \beta}+\delta_{k l}^{j i} r_{\varepsilon \gamma}^{\alpha \beta}\right) / 2 \tag{23.2}\\
&{ }_{\alpha \beta}^{\gamma \varepsilon} \tag{23.3}\\
& R_{i j}^{\gamma l}=\delta_{\alpha \beta}^{\gamma \varepsilon} r_{i j}^{k l}-\delta_{i j}^{k l} j_{\gamma \varepsilon}^{\alpha \beta} .
\end{align*}
$$

Hence,

$$
\begin{equation*}
U_{\beta}^{\varepsilon}=\sum_{i \alpha} R_{i j}^{i \varepsilon}=\operatorname{dim}(V)\left(\delta_{\varepsilon}^{\beta} U_{j}^{l}-\delta_{j}^{l} U_{\varepsilon}^{\beta}\right) \tag{23.4}
\end{equation*}
$$

In view of the determinantal criterion (4), formula (23.4) proves the claim.

Remark 1. Formula (6) shows that the determinant det is normalizing. It is very likely that: (1) an arbitrary multiplicative Poisson bracket (1) on the group $G L(N)$ can be deformed into a quantum group structure on $G L(N)$; (2) this structure possesses a multiplicative quantum determinant; and (3) this quantum determinant is normalizing. (All this is true for $N=2$, it is not true for the supergroup $G L(1 \mid 1)$ (Kupershmidt 1993). An infinitesimal counterpart of this is the Drinfel'd 1992) conjecture that every Lie bialgebra can be quantized; this is proved by Reshetikhin (1992).

Remark 2. In general, even when the r-matrix Poisson bracket (1) on End (V) satisfies the Jacobi identity, this is no longer true for the Poisson bracket on End(End (V)) defined by the R-matrix (23.3). In fact, no non-trivial example is known when the Jacobi identities are satisfied for both $V^{(1)}$ and $V^{(2)}$.

Remark 3. Formula (5) is of the Lax type. It implies that

$$
\left\{\operatorname{det}(M), M^{k}\right\}=\left[U, M^{k}\right] \operatorname{det}(M)
$$

so that

$$
\left\{\operatorname{det}(M), \operatorname{tr}\left(M^{k}\right)\right\}=0
$$

This suggests that, more generally,

$$
\begin{equation*}
\left\{\operatorname{tr}\left(M^{l}\right), \operatorname{tr}\left(M^{k}\right)\right\}=0 \quad \forall k, l \in N \tag{24}
\end{equation*}
$$

This is, indeed, true, and can be deduced from the general formula (9) by the following arguments. Denote by ${ }_{\lambda} D_{I}^{J}$ the determinant of the corresponding minor of the matrix ${ }_{\lambda} M=M-\lambda 1$. Then the formula

$$
\begin{equation*}
\{\operatorname{det}(M-\lambda 1) \quad \operatorname{det}(M-\mu 1)\}=0 \tag{25}
\end{equation*}
$$

follows from the following generalization of the formula (9):

$$
\begin{align*}
& \left\{_{\lambda} D_{I}^{J}, \mu D_{A}^{B}\right\}=r_{i_{k} a_{l}{ }_{\lambda}}^{\varphi \psi} D_{I+\left(\varphi \div i_{k}\right) \mu}^{J} D_{A+\left(\psi \div a_{l}\right)}^{B}-r_{\varphi \psi}^{j_{k} b_{l}}{ }_{\lambda} D_{I}^{J+\left(\varphi \div j_{k}\right)}{ }_{\mu} D_{A}^{B+\left(\psi \div b_{l}\right)}+\lambda(-1)^{k+l}{ }_{\lambda} D_{I-i_{k}}^{j-j_{k}} \\
& \times\left[r_{i_{k} a_{p} \mu}^{j \psi} D_{A+\left(\psi \div a_{p}\right)}^{B}-r_{i k \psi}^{j b_{q}}{ }_{\mu} D_{A}^{B+\left(\psi \div b_{q}\right)}\right]-\mu(-1)^{p+q}{ }_{\mu} D_{A-a_{p}}^{B-b_{q}} \\
& \times\left[r_{a_{p_{k}}}^{b_{q} \psi} D_{I+\left(\psi \div i_{k}\right)}^{J}-r_{a_{p} \psi}^{b_{q} j} \lambda D_{I}^{J+(\psi \div j)}\right] . \tag{26}
\end{align*}
$$

When $I=J=A=B=(1,2, \ldots, N)$, each of the 3 summands in formula (26) vanishes, resulting in formula (25).

First, for a matrix $\mathcal{L} \in \operatorname{Mat}(N)$, set

$$
(r \mathcal{L})_{i j}^{\alpha \beta}=r_{i j}^{\mu \beta} \mathcal{L}_{\mu}^{\alpha} \quad(\mathcal{L} r)_{i j}^{\alpha \beta}=\mathcal{L}_{i}^{\mu} r_{\mu j}^{\alpha \beta}
$$

Then induction on s proves the following formula:

$$
\left\{\left(M^{s+1}\right)_{i}^{\alpha}, M_{j}^{\beta}\right\}=\sum_{p=0}^{s}\left[\left(M^{p} r M^{s+1-p}\right)_{i j}^{\alpha l} M_{l}^{\beta}-\left(M^{s+1-p} r M^{p}\right)_{i l}^{\alpha \beta} M_{j}^{l}\right]
$$

From this we get

$$
\left\{\operatorname{tr}\left(M^{s+1}\right), M_{j}^{\beta}\right\}=(s+1)\left[\operatorname{tr}_{L}\left(r M^{s+1}\right), M\right]_{j}^{l}
$$

so that

$$
\begin{equation*}
\left\{\operatorname{tr}\left(M^{s+1}\right), M\right\}=(s+1)\left[\operatorname{tr}_{\mathrm{L}}\left(r M^{s+1}\right), M\right] . \tag{27}
\end{equation*}
$$

This implies, as above, that

$$
\left\{\operatorname{tr}\left(M^{s+1}\right), M^{l}\right\}=(s+1)\left[\operatorname{tu}_{L}\left(r M^{s+1}\right), M^{l}\right]
$$

so that $\left\{\operatorname{tr}\left(M^{s+1}\right), \operatorname{tr}\left(M^{l}\right)\right\}=0$, as desired.
Second, for a pair of matrices \mathcal{L}, \mathcal{N} set

$$
\begin{aligned}
& (\mathcal{L} \otimes \mathcal{N})_{i \alpha}^{i \beta}=\mathcal{L}_{i}^{j} \mathcal{N}_{\alpha}^{\beta} \quad\{\mathcal{L} \otimes \mathcal{N}\}_{i \alpha}^{j \beta}=\left\{\mathcal{L}_{i}^{j}, \mathcal{N}_{\alpha}^{\beta}\right\} \\
& {[r(\mathcal{L} \otimes \mathcal{L}) r]_{i j}^{\alpha \beta}=r_{i j}^{\mu \nu} \mathcal{L}_{\mu}^{\alpha} \mathcal{N}_{\nu}^{\beta} \quad[(\mathcal{L} \otimes \mathcal{N}) r]_{i j}^{\alpha \beta}=\mathcal{L}_{i}^{\mu} \mathcal{N}_{j}^{\nu} r_{\mu \nu}^{\alpha \beta} .}
\end{aligned}
$$

Then the defining Poisson bracket on $G L(N)$ given by the formula (1) can be written as

$$
\begin{equation*}
\{M, M\}=[r, M \otimes M] \tag{28}
\end{equation*}
$$

and the induction on s yields

$$
\left\{M^{s+1}, M\right\}=\left[\sum_{p=0}^{s}\left(M^{p} \otimes \mathbb{1}\right) r\left(M^{s-p} \otimes \mathbb{1}\right), M \otimes M\right] .
$$

From this formula the identity (27) results again. More generally still, induction on b shows that

$$
\begin{equation*}
\left\{M^{a+1} \otimes, M^{b+1}\right\}=\left[\sum_{p=0}^{a} \sum_{q=0}^{b}\left(M^{p} \otimes M^{q}\right) r\left(M^{a-p} \otimes M^{b-q}\right), M \otimes M\right] \tag{29}
\end{equation*}
$$

and from this identity formula (24) results upon taking the trace of each of the 2 arguments of the tensor product.

Remark 4. Formula (24) is probably known. For the case when the r-matrix $r_{i j}^{\alpha \beta}$ corresponds to the quasiclassical limit of the quantum group $G L_{q}(n)$, this formula is proved by Ikeda (1991).

Remark 5. For $N>2$, a power of a quantum $N \times N$ matrix is not, in general, a quantum matrix any more. In addition, the notion of trace does not survive quantization. Thus, formula (24) cannot have a quantum analogue. On the other hand, the notion of determinant survives quantization, so one should expect quantum analogues of the determinantal formulae (9), (25), (26) to exist.

Remark 6. Formulae (9) and (24) are logically independent. This can be seen from the following argument. Taking the differential at $\mathbf{1}$ of formula (1), we get a Lie algebra structure on $g l(n)^{*}$, hence a Poisson structure on $C^{\infty}(g l(n))$ of the form

$$
\begin{equation*}
\left\{N_{i}^{\alpha}, N_{j}^{\beta}\right\}=r_{i j}^{\varphi \beta} N_{\varphi}^{\alpha}+r_{i j}^{\alpha \varphi} N_{\varphi}^{\beta}-r_{\varphi j}^{\alpha \beta} N_{i}^{\varphi}-r_{i \varphi}^{\alpha \beta} N_{j}^{\varphi} \tag{30.1}
\end{equation*}
$$

or, in tensorial notation,

$$
\begin{equation*}
\{N \otimes N\}=[r, 1 \otimes N+N \otimes 1] \tag{30.2}
\end{equation*}
$$

There exists no analogue of the determinantal formula (9) in this framework. However, formula (24) holds true, as follows from taking the traces of the following general formula

$$
\begin{align*}
\left\{N^{p+1} \otimes N^{q+1}\right\} & =\sum_{a+b=p}\left[\left(N^{a} \otimes 1\right) r\left(N^{b} \otimes N^{q+1}\right)-\left(N^{b} \otimes N^{q+1}\right) r\left(N^{a} \otimes 1\right)\right] \\
& +\sum_{c+d=q}\left[\left(1 \otimes N^{c}\right) r\left(N^{p+1} \otimes N^{d}\right)-\left(N^{p+1} \otimes N^{d}\right) r\left(1 \otimes N^{c}\right)\right] \tag{31}
\end{align*}
$$

We see that

$$
\begin{equation*}
\left\{\operatorname{Tr}(N)^{\otimes}, N\right\}=[U, N] \tag{32}
\end{equation*}
$$

so that $\operatorname{det}(M)$ is central iff $\operatorname{Tr}(N)$ is.
This work was partially supported by the National Science Foundation.

References

Drinfel'd V G 1992 Lect. Notes Math. 15101
Ikeda K 1991 Lett. Math. Phys. 23121
Kupershmidt B A 1993 J. Phys. A: Math. Gen. 26 L251
Kupershmidt B A 1994 Quantum Subgroups of the Quantum Group GL(2) preprint
Reshetikhin N 1992 Int. Math. Res. Notes 7143
Sudbery A 1990 J. Phys. A: Math. Gen 23 L697

