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LETTER TO THE EDITOR

Poisson relations between minors and their consequences

B A Kupershpidt )
The University of Tennessee Space Institute, Tollahoma, TN 37388, USA

Received 23 February 1994

Abstract. A multiplicative Poisson bracket on GL(N) can be restricted onto SL{N) iff the
determinant det is central on GL(N). To decide whether the det is ceptral, a simple criterion is
derived in the r-matrix language with the help of a general formula for Poisson brackets between
determinants of arbitrary minors.

Quantum group structures on SL{N) always appear through the following device: one
starts with a quantum group structure on GL(N), constructs the corresponding quantum
deterrninant, shows that it is central, and then equates this determinant to 1. It is quite
likely that all quantum group structures on SL{N) can be obtained in this way, but this is
very difficult to prove. In the quasiclassical limit, the corresponding conjecture is that every
multiplicative Poisson bracket on SL(N) comes from a multiplicative Poisson bracket on
GL(N) with a central determinant. This is undoubtedly true and is, probably, technically
feasible to prove by the currently available machinery. (For N = 2, both the quantum and
the quasiclassical claims are proven in (Kupershmidt 1994).) In practice, since the group
GL(N) is much more convenient to work with than the group SL(N), one starts with a
multiplicative Poisson bracket on GL{N'} and then, if the determinant happens to be central,
passes on to SL(N'} by setting det = 1.

But what is an efficient way to decide whether the det is central? Let M = (M) be
the typical matrix of coordinate functions on GL(N). Let

M, MEY = r 7P MEME oM M) (D)

be the general multiplicative (pre) Poisson bracket on GL(¥) (and Mat(¥N)); summation is
always implied over non-fixed repeated indices. We do nor assume in what follows (unless
specified othergise) that the Jacobi identities for the Poisson bracket (1) are satisfied; thus,
the only property required of the structure constants r}j"" is the skew-symimetry;

=it @
LetU = t_r!_(r) = —trg(r) be the following matrix in Mat(N):

Ul =rgi =—rig- = 3)
The determinantal criterion alluded to above is:

{det is central} & {U =0} ] 4)
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This follows from the formnla

{det(M), M} = [U, M]det(M)} (5
meaning, locally, that

{det(M), ME} = [U, MY det(M). (6)

Indeed, from formula (5) we see that det is central iff I/ is a scalar matrix, But formulae
(2), (3) imply that

gl =0 &)

and the criterion (4) follows.

Formula (6) results from the following general determinantal identity. For a pair of
multi-indices 7 = (f], fz, N ,ip), J = (fl,jz, ...,jp) with 1 $ il,iz, ...,]'1,]-2, -,<‘ N,
set

D! = det(M) My =M. (8)
Then

B b @0 [E+GF ),
(D}, D2} =18 D iy Dhtvipsay — Ty Dy 4730 D00 @)

here I + (¢ = i) is the multi-index I whose kth eniry iy is replaced by ¢, and similar for
the other multi-indices. In particular, when the multi-indices A and B are simple indices:
== (@) and B = (b), formula (9) becomes:

{Dj , Mb} ua D}f+( ._,J‘)Mb kaDJ"F(?"_Jk)M'!ﬁ (10)
When I =J=(1,2,...,N), formula (10) vields

{det(M), MP} = det(M)(rd MY, — ri2 MY) = det(Wn[U, ML
which is formula (6).
Proof of formula (9).  Let us first prove formula (10). 'We use induction on the length |7]
of the multi-index I. For |7} = 1 formula (10} is just the defining formula F1). To proceed
with the induction step, we use Laplace’s formula

DY = (=1 upI ‘ (a1

where i 7 is the multi-index (i, i1, ...,) and J — 1, is the multi-index 7 whose cth entry #,
is removed. Now, for T =il we have

(DY, M2} = (D, M5} = (- M{ DY, ME){by(10)] ‘
= (=)D M ME, — rlb M MY) (12.1)
(D ME LY DY oMy = S rie DY T, (12.2)

s¥C
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On the other hand, formula (10) predicts that

I agb o nJ . b 1ch Tt
{‘_DI ' Ma} = (ria D(aI + r?;fpg+(w—:-i¢)M¢ —?‘J.:;D“ o= M:zb

= ,-1_5:’:5'(__1)6-{-1 M;;D}T*fcMz + rfff(—l)c+lM:ch}-(;jei,‘)M$ (13.1)
— gg[Z(T_l)c-z-lMier}T—rﬁ(pﬂsJ + (—1)“+le D}f—t,:] M:Ip‘ (13.2)
o :

The 1st, 2nd, 3rd, and 4th terms in the expression (12) match, in the expression (13), the
Lst, 4th, 2nd, and 31d term, respectively. This proves formula (10).

To prove formula (9), we use induction on |A] = | B|. The base of the induction is the
case {A| = |B] = 1, and this is the just proved formula (10). To make an induction step,
let A =aA. Then

(b}, DY = {D{, DB} = (D], (=1)°* MP D5 )by (9), (10)]

13 0B, 9% 1y B—f. i Be py S0t ;yB—Be+(r-r)
= GO MEUEL D] oy DGz = D To DT T DT A P4
sFe
+ (__1)1‘.""1 Di"ﬂc[r}}:ﬁ'Df+(¢+&}M£¢ _ r:;fc D;'F(Qa':‘Jk)Mf]. (14.2)

On the other hand, formula (9) predicts that

I pB I i I B
{D7, D3} =1{D;, Dy} = ":'ff Dy prinPoa
ol B JtBe n i) B0 fs)
+ Tia DitprapPanspsay —Tew P1 - Daa

B—f. . yB— P
= Dspraplrliy ("D ME DI 4L D ME D) (S
_ Téf‘D;+<¢+jk)[Z(—I)C+IM£C Dﬁ—ﬁc+('#"7‘ﬁd + (_1)3+1M3Di'ﬁsi|_
ots
(15.2)

* The matching scheme is: the Ist, 2nd, 3rd, and 4th term in the expression (14) versus the
2nd, 3rd, 1st and 4th term, respectively, in the expression (15). ]

‘We now consider some applications of the determinantal criterion (4).
Let V be an N-dimensional vector space with a quadratic Poisson bracket

(i, %} = cf‘jxkx;- cfj = —cj-‘-’ = cfj‘ (16.1)
and suppose A!(V) also has a quadratic Poisson bracket
G5l =dias 4 =di=-dj (16.2)

cf"jf and dﬁ are constants, the variables x;s are even, and the variables {,—‘,—s' are odd. Then the
actions Bnd(V) x ¥V — V, End(V) x AL(V) - AN(V) are Poisson iff formula (1) holds
with

i =cl +df. A | (16.3)



L510 Letter to the Editor

Conversely, given the multiplicative Poisson bracket {1} or End{V}, it generates Poisson
actions on V and Al(V) with

H=cH+rhr =B+ (16.4)
In this language, the determinantal criterion (4) becomes
sz-‘ + dgf =0 Vi, j. . (17)

Let us apply this formula to the Poisson version of the (factorizable) multiparameter
deformation of the quantum GL{N) (Sudbery 1990). This is the case

e, 2t = Pyjxix; G =—D (18.1)
{&:. &) = Vi kig; Wy =~y (18.2)
off = @y +of2  dif =yl -2 (18.3)
2rf = BE (@i + W) + 15 (Dyy — Wiy) (18.4)

of formulae (16); here ® and ¥ are arbitrary skew-symmetric constant matrices. The
determinantal criterion (4) in the form (17) then turns into

Z_,‘(da-f+wf,->=o Vi (19)

The Jacobi identities for the End(V)} with the r-matrix (18.4) are satisfied iff there exists a
permutation o of the indices (1,2,..., N) such that
$;; — ‘Il,'j = const{sgn(o () — o (GN]. 20

Let us call the space End(V) determinantal if the determinant is central. Set V<! =
End(V).

Theorem 1. V@ = End(V®) is determinantal iff V{1 is.

Proof. The multiplicative Poisson bracket (1) on V{1 = End(V) induces the following
Poisson bracket on AN(V®) = AL(Bad(V)):
By __ 0¥ -} 2 14

(@, 2fy =¥ ozl — i ora! @1)
where the Qs are odd. Formula (21) is equivalent to the property of the pair of actions
AYERd(V)) x V — Al(V) and A'(End(V)) x AN(V) - V being Poisson. Together,
formulae (1) and (21} make into Poisson maps the natural composition
A*Erd(V)) x A*(End(V)) ~» AT (End(V)) u,vel0l1}=2Z,. (22)
Formutlae (1) and (2) can be put into the form (16}, with

ye .
Cl =Gl +ajirl it ~abror2 @30
o
D’;:f = (SYEH _ gvepdk sl ap | s aﬁ) ) 23.2)
,-'J; = {Gopti; — dpaliy = Sulys T u’ey )/ (23.
[+4
yE
RE = §Ter — sty @3.3)
uf
Hence,
] ie
Ul =) RY =dm(V)@EEU! - 3UP). ' (23.4)
i i off

In view of the determinantal criterion {4), formula (23.4) proves the claim. O
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Remark 1. Formula (6) shows that the determinant det is normalizing. It is very likely that;
(1) an arbitrary multiplicative Poisson bracket (1) on the group GL(N) can be deformed into
a quantum group structure on GL(N}; (2) this structure possesses a multiplicative quantum
determinant; and (3) this quantum determinant is normalizing. (All this is tue for N =2, it
is not true for the supergroup GL(1 [ 1) (Kupershmidt 1993). An infinitesimal counterpart
of this is the Drinfel’d 1992) conjecture that every Lie bialgebra can be quantized; this is
proved by Reshetikhin (1992).

Remark 2. In general, even when the r-matrix Poisson bracket (1) on End(V) satisfies the
Jacobi identity, this is no longer true for the Poisson bracket on End(End(V)) defined by
the R-matrix (23.3). In fact, no non-frivial example is known when the Jacobi identities are
satisfied for both V" and V@,
Remark 3. Formula (5) is of the Lax type. It implies that

{det(M), M*} = [U, M*] det(M)
so that

{det(M), tr(M*)} = 0.
This suggests that, more generally,

{tr(M"), e(M*)} =0 vk,l€ N. - 24
This is, indeed, true, and can be deduced from the general formula (9) by the following
arguments. Denote by ,D{ the determinant of the corresponding minor of the matrix
3M = M — Al. Then the formaula

{det(M — A1) det(M — uD} =0 (25)
follows from the following generatization of the formula (8):

’ bt JH@ti) B, 1 pyl—i
DF 1 DY = 2% D} sprionDoscpeay — T D TEH  pEO=B) 5 _1yest, plh

T=iz
i nB Ji, B +by) -+ Bup,
X [rija, uDAstgsay = Ty wDa 1= (1T, Dy
by Bodt I . .
x{r, a:rzk ADF’+(¢+=1) -7, a:;‘.: 1D; =i (26)

When I =J=A=B=(1,2,..., N), each of the 3 summands in formula (26) vanishes,
resulting in formula (25). -
First, for 2 matrix £ € Mat(N), set

. uP f_ af
oy =ri L5 (Lryf = Lir;.

Then induction on § proves the following formula:

‘ &
(AN, MEY = [Pr P Mf — (e My ML
p=0
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From this we get
{trM* 1y, MP} = (s + DI M, MY
S0 that
(MY, MY = (5 + DIt M5+, M1, @n
This implies, as above, that
(M), M’} = (s + DI (M), M']

so that {tr(M**), w(M")} = 0, as desired.
Second, for a pair of matrices £, N set

COME =LINE  {LINHE = (L], D)
FC®On?E =LVt e NIE = LiNprE.

Then the defining Poisson bracket on GL(N) given by the formula (1) can be written as
{(M$M} =1, M ® M] (28)

and the induction on s yields

{MS-E.I?M} = [Z(Mp ® I)T{M“""P ® 1): M @ Mil.
p=0

From this formula the identity (27) results again. More generally still, induction on & shows
that '

a ]
(Mo = [ZZ(MF QMM P Q M), M M] 29)
p=0 g=0

and from this identity formula (24) results upon taking the trace of each of the 2 arguments
of the tensor product.

Remark 4. Formula (24) is probably known. For the case when the r-matrix rfj'e
corresponds to the quasiclassical limit of the quantumn group GL, (), this formula is proved

by Ikeda (1991).

Remark 5. For N > 2, a power of a quantum N X N matrix is not, in general, a
quantum matrix any more. In addition, the notion of trace does not survive quantization,
Thus, formula (24) cannot have a quantumn analogue. On the other hand, the notion
of determinant survives quantization, so one should expect quantum analogues of the
determinantal formulae (9), (25), (26) to exist.
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Remark 6. Formulae (9) and (24) are logically independent. This can be seen from the
following argument. Taking the differential at 1 of formula (1), we get a Lie algebra

structure on gl{n)*, hence a Poisson structure on C*°(gi(n)) of the form
a wrby — 00 e opprf L afage _ af s
N, Ny =0 Ny + 1 Ng =1 NP — 1, N;
or, in tensorial notatiomn,

[N¢N}=[r1®@N+N®I1]

(30.1)

(30.2)

There exists no analogue of the determinantal formula (9) in this framework. However,
formula (24) hoids true, as follows from taking the traces of the following general formula

(NrHieNet = 3" [(N°© Dr(V? @ N7™) — (N? @ N*H)r(v* @ 1)]
a+b=p

+ Y (1@ Ny @™ @ N4 — (NP @ N)r(1 @ N9)l.

otd=g
We see that
{Te(N)¥N} = [U, N]
o that det(M) is central iff Tr(&) is.

This wotk was partially supported by the National Science Foundation.
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