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LETTER TO THE EDITOR 

Poisson relations between minors and their consequences 

B A Kupersbmidt 
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA 

Received 23 February 1994 

Abshact. A multiplicative Poisson bracket on GL(N)  can be restricted onto S L ( N )  iff the 
determinant det is cenhal on GL(N) .  To decide whether the det is cenaal, a simple criterion is 
derived in the r-ma& language with the help of a general formula for Poisson brackets between 
determinants of arbitrarv minors. 

Quantum group structures on SL(N)  always app& through the following device: one 
starts with a quantum group structure on G L ( N ) ,  'constructs the corresponding quantum 
determinant, shows that it is central, and then equates this determinant to 1. It is quite 
likely that all quantum group structures on S L ( N )  can be obtained in this way, but this is 
very difficult to prove. In the quasiclassical l i t ,  the corresponding conjecture is that every 
multiplicative Poisson bracket on S L ( N )  comes from a multiplicative Poisson bracket on 
G L ( N )  with a central determinant. This is undoubtedly true and is, probably, technically 
 feasible^ to prove by the currently available machinery. (For N = 2, both the quan&m and 
the quasiclassical claims are proven in (Kupershmidt 1994).) In practice, since the group 
G L ( N )  is much more convenient to work with than the group SL(N), one starts with a 
multiplicative Poisson bracket on GL(N)  and then. if the determinant happens to be central, 
passes on to SL(N) by setting det = 1. 

But what is an efficient way to decide whether the det is central? Let M = (Mp) be 
the typical matrix of coordinate functions on G L ( N ) .  Let 

be the general multiplicative (pre) Poisson bracket on G L ( N )  (and Mat(N)); summation is 
always implied over non-fixed repeated indices. We do not assume in what follows (unless 
specified otheqyise) that the Jacobi identities for the Poisson bracket (1) are satisfied, thus, 
the only property required of the structure constants r;* is the skew-symmetq: 

TQ* = -rtQ 
ZJ JL ' 

Let U = tr'(r) = - t r R ( r )  be the following matrix in Mat(N): 

U!' ~ rp! = 
2 9, L'P ' 

The determinantal criterion alluded to above is: 

(3) 

(det is central) + (U = 0). (4) 
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This follows from the formula 

{det(M), M] = [U, M]det(M) (5) 

meaning, locally, that 

{det(M), M,b] = [U,  Mltdet(M). (6) 

Indeed, from formula (5) we see that det is central iff U is a scalar matrix. But formulae 
(Z), (3) imply that 

k U = O  (7) 

and the criterion (4) follows. 
Formula (6) results from the following general determinantal identity. For a pair of 

multi-indices I = (il, iz, . . . , i,,), J = ( j l ,  j,, . . . , j,,) with 1 < i l ,  iz, .. . , j j ,  j,, . . . < N ,  
set 

D: = det(M) Mg = M!' 4". , (8) 

Then 

here I + (q ik) is the multi-index I whose kth entry i~ is replaced by q, and similar for 
the other multi-indices. In particular, when the multi-indices A and B are simple indices: 
A = (a) and B = (b) ,  formula (9) becomes: 

(10) jhbDJ+$+jdMq Wi. @I = r ~ ! D ~ + ( v + i k ) M ~  - reg* I 0 '  

When I = J = (1,2,. . ., N ) ,  formula (IO) yields 

[det(M), Mi] = det(M)(r:!M$ - $M,") = det(M)[U, M]f: 

which is formula (6). 

Proof o f formla  (9). Let us first prove formula (10). We use induction on the length 111 
of the multi-index I .  For )I/ = 1 formula (10) is just the defining formula pl). To proceed 
with the induction step, we use Laplace's formula 

Di, 3 - - (-1)C+IM!CDg-'? , I  (11) 

where il is the multi-index (i, i l ,  . . . , ) and J' -r, is the multi-index 9 whose cth entry tc 
is removed. Now, for Z = il we have 

{D,", Mi] = [ D S ,  M,b] = {(-l)fi'M~Df-t', ~ ~~ Mt}[by(lO)] 

- - (-1)C+ID3-k I ( ,.d' iu M,M$ 4 -r:$%4rMf) (12.1) 

+ ( - I ) c + ~ M ! ~ ( ~ ~ J . D ~ - "  I lkU I+(q+U) . ~b $ - c '@I i d  S-&+@+rJ M 3 .  (12.2) 
rfc 
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On the other hand, formula (10) predicts that 

{D$, Ma} b -  - (rin 9 @ J  D,, + rlzD$+(q+ik& - rp* t& DT+(v+t)M* ,I 
L1 

- - ria ,t ( -I)c+lMf'D3-" , I M; +r[z(-1)C+lMfD3-" I+(p+ id  M b  0 (13.1) 

(13.2) 

The lst, Znd, 3rd, and 4th tems in the expression (12) match, in the expression (13). the 
1SL 4th, Znd, and 3rd term, respectively. This proves formula (10). 

To prove formula (9), we use induction on IAl = IBI. The base of the induction is the 
case IAl = IBI = 1, and this is the just proved formula (10). To make an induction step, 
let A = aA. Then 

On the other hand, formula (9) predicts that 

(15.2) 

The matching scheme is: the Ist, Znd, 3rd, and 4th term in the expression (14) versus the 
0 Znd, 3rd, 1st and 4th term, respectively, in the expression (15). 

We now consider some applications of the determinantal criterion (4). 
Let V be an N-dimensional vector space with a quadratic Poisson bracket 

[ X i , X j ]  = c;xkXl c!! IJ = - cc  1, c!! LI (16.1) 

and suppose A'(V) also has a quadratic Poisson bracket 

{ti, C j ]  d;tktl &! ' I  = d!! I t  = -d!k Ll (16.2) 

c; and d$ are constants, the variables xis  are even, and the variables Cis'are odd. Then the 
actions End(V) x V + V, End(V) x Al(V) + A'(V) are Poisson iff formula (1) holds 
with 

rk! + c!! + d!! (16.3) t l  ' I  ' I  . 
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Conversely, given the multiplicative Poisson bracket (1) on End(V), it generates Poisson 
actions on V and A'(V) with 

6 = (rf,! + r 3 / 2  di;' = (ri;' + $ ) / 2 .  (16.4) 
In this language, the determinantal criterion (4) becomes 

c $ + ~ = o  W , j .  
Let us apply this formula to the Poisson version of the (factorizable) multiparameter 

deformation of the quantum GL(N)  (Sudbery 1990). This is the case 
{ X i , X j )  = Q , i j x j x j  Q,.. JJ --a).. - J' (18.1) 

{ t i , t j I = I i j t i t j  y. 11 - - I .  - J [  (18.2) 

c!! IJ = @..(a!! 'J tJ + $)/2 (18.3) 

2.; = $(Q,ij + Yi,) + "j(Q,i j  - I i j )  (18.4) 
of formulae (16); here Q, and I are arbitrary skew-symmehic constant matrices. The 
determinantal criterion (4) in the form (17) then turns into 

' 

d t  = Qij(&!! I J  - #/2 

C(O~~+W;~)=O ~ V j .  (19) 

The Jacobi identities for the End(V) with the r-matrix (18.4) are satisfied iff there exists a 
permutation U of the indices (1,2, .  . . , N )  such that 

O i j  - Yij = const[sgn(u(i) - u(j))]. (20) 
Let us call the space End(V) defenninuntul if the determinant is central. Set V(') = 

End(V). 

Theorem 1. 

Proof: The multiplicative Poisson bracket (1) on V'" = End(V) induces the following 
Poisson bracket on A'(V(l)) = A'(End(V)): 

(21) 

V@) = End(V")) is determinantal iff V(') is. 

{ay, $1 = rG*a$n$ - r;$ara; 
where the as are odd. Formula (21) is equivalent to the property of the pair of actions 
A'(End(V)) x V --t A'(V) and A'(End(V)) x A'(V) + V being Poisson. Together, 
formulae (1) and (21) make into Poisson maps the natural composition 

Formulae (1) and (2) can be put into the form (16), with 
A"(End(V)) x A"(End(V)) 4 AU'"(End(V)) U, U E {O, 1) = Zz. (22) 

ye 

4 
(23.1) Xi - gYErkl Y6 Ik c i j  - ( i j  + ~ p u r i j  - air$ - ~{r$)/2 

(23.2) 

(23.3) 

(23.4) 

In view of the determinantal criterion (4), formula (23.4) proves the claim. U 
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Remark 1. Formula (6) shows that the determinant det is normalizing. It is very likely that: 
(1) an arbitrary multiplicative Poisson bracket (1) on the group G L ( N )  can be deformed into 
a quantum group structure on G L ( N ) ;  (2) this structure possesses a multiplicative quantum 
determinant; and (3) this quantum determinant is normalizing. (All this is true for N = 2, it 
is not true for the supergroup GL(1 I 1) (Kupershmidt 1993). An infinitesimal counterpaa 
of this is the Drinfel'd 1992) conjecture that every Lie bialgebra can be quantized; this is 
proved by Reshetikhin (1992). 

Remark2 In general, even when the r-matrix Poisson bracket (1) on End(V) satisfies the 
Jacobi identity, this is no longer true for the Poisson bracket on End(Eud(V)) defined by 
the R-matrix (23.3). In fact, no non-trivial example is known when the Jacobi identities are 
satisfied for both V(')  and V(2). 

Remark 3. Formula (5) is of the Lax type. It implies that 

[det(M), My) = [U, Mk]det(M) 

so that 

[det(M), t r (Mk))  = 0. 

This suggests that, more generally, 

{tr(Mi), tr(Mk)] = 0 Vk, I E N .  (24 

This is, indeed, me,  and can be deduced from the general formula (9) by the following 
arguments. Denote by .ID: the determinant of the corresponding minor of the matrix 

= M - A l .  Then the formula 

(det(M - Al) det(M - pl)] = 0 

follows from the following generalization of the formula (9): 

When I = 3 = A = B = (1.2, . . . , N), each of the 3 summands in formula (26) vanishes, 
resulting in formula (25). 

First, for a matrix I: E Mat(N), set 

(rI:)?! tJ = r?I:; CJ (Lr);! L?ra! I PI' 

Then induction on s proves the following formula: 

{(M*+')S, Mjs] = k:[(MPrMS+1-P)U!M8 I - (M"+'-PrMP)$M!] I '  

P=o 
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Then the defining Poisson bracket on GL(N)  given by the formula (1 )  can be written as 

{M?Ml = Ir, M 0 MI (28) 

and the induction on s yields 

1 B l)r(MT-p 0 I), M 8 M . 

From this formula the identity (27) results again. More generally still, induction on b shows 
that 

and from this identity formula (24) results upon taking the trace of each of the 2 arguments 
of the tensor product. 

Remark 4. For the case when the r-matrix r:p 
corresponds to the quasiclassical limit of the quantum group GL,(n), this formula is proved 
by Ikeda (1991). 

Remark 5. For N > 2, a power of a quantum N x N matrix is not, in general, a 
quantum matrix any more. In addition, the notion of trace does not survive quantization. 
Thus, formula (24) cannot have a quantum analogue. On the other hand, the notion 
of determinant survives quantization, so one, should expect quantum analogues of the 
determinantal formulae (9), (25), (26) to exist 

Formula (24) is probably known. 
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Remark 6.  Formulae (9) and (24) are logically independent. This can be seen &om the 
following argument. Taking the differential at 1 of formula (l), we get a Lie algebra 
structure on gl(n)*, hence a Poisson structure on Cm(gl(n)) of the form 

[ N ; . , N i B ] = r ~ ~ N , + r ~ ~ N , B - r ~ ~ N ~ - r ~ N ~  (30.1) 

or, in tensorial notation, 

{ N ? N l =  [r, 1 0 N + N @ 11. (30.2) 

There exisis no analogue of the determinantal formula (9) in this framework. However, 
formula (24) holds true, as follows from taking the traces of the following general formula 

{NP+'?NY++'I  = 

+ 

[(Nu D 1)r(N6 8 N*+*) - ( N ~  8 NY+')r(iV D I)] 

[ ( l o  NC)r(Np+' 0 N d )  - (A7"+' 0 Nd)r ( l  D NC)I. 

u+b=p 

(31) 
*d=Y 

We see that 

ITr(N)?Nl= [U, NI (32) 

so that det(M) is central iff Tr(N) is. 
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